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Abstract
This talk reports work done in collaboration with Jin Hur, Choonkyu Lee and
Hyunsoo Min concerning the computation of the precise mass dependence of
the fermion determinant for quarks in the presence of an instanton background.
The result interpolates smoothly between the previously known chiral and
heavy quark limits of extreme small and large mass. The computational
method makes use of the fact that the single instanton background has radial
symmetry, so that the computation can be reduced to a sum over partial waves of
logarithms of radial determinants, each of which can be computed numerically
in an efficient manner using a theorem of Gelfand and Yaglom. The bare sum
over partial waves is divergent and must be regulated and renormalized. We
use the angular momentum cutoff regularization and renormalization scheme.
Our results provide an extension of the Gelfand–Yaglom result to higher-
dimensional separable differential operators. I also comment on the application
of this approach to a wide variety of fluctuation determinant computations in
quantum field theory.

PACS numbers: 12.38.−t, 11.15.Kc, 02.60.−x, 02.70.Hm

1. Introduction

In this paper I present an overview of some recent progress [1] in computing one loop quantum
vacuum polarization effects. Mathematically, this requires computing the determinant of a
fluctuation operator, which describes the quadratic fluctuations about a semiclassical solution.
This is a difficult problem, but it is worth studying as it has important physical applications
to computations of the effective action, the partition function or the free energy. It is also an
interesting mathematical problem to learn about the spectral properties of partial differential
operators. In this paper I focus mainly on the computation of fermion determinants in
nontrivial background fields, which is an important challenge for both continuum and lattice
quantum field theory. Explicit analytic results are known only for very simple backgrounds,
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and are essentially all variations on the original work of Heisenberg and Euler [2, 3]. For
applications in quantum chromodynamics (QCD), an important class of background gauge
fields are instanton fields, as these minimize the Euclidean gauge action within a given
topological sector of the gauge field. Furthermore, instanton physics has many important
phenomenological consequences [4–6]. Thus, we are led to consider the fermion determinant,
and the associated one-loop effective action, for quarks of mass m in an instanton background.
Here, no exact results are known for the full mass dependence, although several terms have
been computed analytically in the small mass [4, 7, 8] and large mass [9, 8] limits. Recently [1],
with Hur, Lee and Min, we presented a new computation which is numerical, but essentially
exact, that evaluates the one-loop effective action in a single instanton background, for any
value of the quark mass (and for arbitrary instanton size parameter). The result is fully
consistent with the known small and large mass limits, and interpolates smoothly between
these limits. This could be of interest for the extrapolation of lattice results [10], obtained at
unphysically large quark masses, to lower physical masses, and for various instanton-based
phenomenology.

Our computational method is simple and efficient, and can be adapted to many other
determinant computations in which the background is sufficiently symmetric so that the
problem can be reduced to a product of one-dimensional radial determinants. While this
is still a very restricted set of background field configurations, it contains many examples
of interest, the single instanton being one of the most obvious. The method is based on
the Gelfand–Yaglom method for computing determinants of ordinary differential operators
[11–16]. But in higher-dimensional problems with partial differential operators, it is known
[14] that the naive generalization is divergent, even for simple separable problems where there
is an infinite number of 1D determinants to deal with. Physically, this divergence reflects the
fact that in dimensions greater than one, one must confront renormalization. Our results can
be viewed, in fact, as giving an extension of the Gelfand–Yaglom result to higher-dimensional
separable differential operators.

2. Preliminaries: effective asction in an instanton background

The first step is to recall that since the instanton background field is self-dual, we can deduce the
fermion determinant from a computation of the determinant of the associated Klein–Gordon
operator. This is because self-dual gauge fields have the remarkable property that the Dirac
and Klein–Gordon operators in such a background are isospectral [4, 17]. This implies that
the renormalized one-loop effective action of a Dirac spinor field of mass m (and isospin 1

2 ),
�F

ren(A;m), is related to the corresponding scalar effective action, �S
ren(A;m), for a complex

scalar of mass m (and isospin 1
2 ) by [4, 8]

�F
ren(A;m) = −2�S

ren(A;m) − 1

2
ln

(
m2

µ2

)
, (1)

where µ is the renormalization scale. The ln term in (1) corresponds to the existence of a
zero eigenvalue in the spectrum of the Dirac operator for a single instanton background. We
consider an SU(2) single instanton background, in regular gauge [4, 18]:

Aµ(x) ≡ Aa
µ(x)

τ a

2
= ηµνaτ

axν

r2 + ρ2
, Fµν(x) ≡ Fa

µν(x)
τ a

2
= −2ρ2ηµνaτ

a

(r2 + ρ2)2
, (2)

where ηµνa are the standard ’t Hooft symbols [4, 6].
The one-loop effective action must be regularized. We use Pauli–Villars regularization

(with heavy regulator mass �), adapted to the Schwinger proper-time formalism, and later



Connecting the chiral and heavy quark limits 6285

0.5 1 1.5 2 2.5 3

-0.2

-0.15

-0.1

-0.05

0.05

0.1

0.15
Γ̃ren(m)

m

Figure 1. Plot of the analytic small and large mass expansions for �̃S
ren(m), from equation (6).

Note the gap in the region 0.5 � m � 1, in which the two expansions do not match up.

we relate this to dimensional regularization, as in the work of ’t Hooft [4]. The regularized
effective action has the proper-time representation

�S
�(A;m) = −

∫ ∞

0

ds

s

(
e−m2s − e−�2s

) ∫
d4x tr〈x| e−s(−D2) − e−s(−∂2)|x〉, (3)

where D2 ≡ DµDµ, and Dµ = ∂µ − iAµ(x). The renormalized effective action, in the
minimal subtraction scheme, is defined as [4, 8]

�S
ren(A;m) = lim

�→∞

[
�S

�(A;m) − 1

12

1

(4π)2
ln

(
�2

µ2

) ∫
d4x tr(FµνFµν)

]

≡ lim
�→∞

[
�S

�(A;m) − 1

6
ln

(
�

µ

)]
, (4)

where we have subtracted the charge renormalization counter term, and µ is the renormalization
scale. By dimensional considerations, we may introduce the modified scalar effective action
�̃S

ren(mρ), which is a function of mρ only, defined by

�S
ren(A;m) = �̃S

ren(mρ) + 1
6 ln(µρ), (5)

and concentrate on studying the mρ dependence of �̃S
ren(mρ). Then there is no loss of generality

in our setting the instanton scale ρ = 1 henceforth.
It is known from previous work that in the small mass [4, 7, 8] and large mass [8, 9]

limits, �̃S
ren(m) behaves as

�̃S
ren(m) =




α(1/2) + 1
2 (ln m + γ − ln 2) m2 + · · · , m → 0

− ln m

6
− 1

75m2
− 17

735m4
+

232

2835m6
− 7916

148 225m8
+ · · · , m → ∞,

(6)

where α(1/2) = − 5
72 −2ζ ′(−1)− 1

6 ln 2 � 0.145 873, and γ � 0.5772 . . . is Euler’s constant.
This small mass expansion is based on the fact that the massless propagators in an instanton
background are known in closed form. On the other hand, the large mass expansion in (6) can
be computed in several ways. A very direct approach is to use the small-s behaviour of the
proper-time function appearing in (3), as given by the Schwinger–DeWitt expansion.

Equation (6) summarizes what is known analytically about the mass dependence of
the renormalized one-loop effective action in an instanton background. This situation is
represented in figure 1, which shows a distinct gap approximately in the region 0.5 � m � 1,
where the small and large mass expansions do not match up.
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3. The Gelfand–Yaglom technique

A beautiful result of Gelfand and Yaglom [11] provides a spectacularly simple way to compute
the determinant of a one-dimensional differential operator. Their result has since been extended
in various ways [12–16], but here we will only need their result for radial differential operators.
Suppose M1 and M2 are two second order ordinary differential operators on the interval
r ∈ [0,∞), with Dirichlet boundary conditions assumed. In practice we will choose M1 to
be the operator of interest, and M2 to be the corresponding free operator. Then the ratio of
the determinants is given by

detM1

detM2
= lim

R→∞

(
ψ1(R)

ψ2(R)

)
(7)

where ψi(r) (for i = 1, 2 labelling the two different differential operators, M1 and M2)
satisfies the initial value problem

Miψi(r) = 0, with ψi(0) = 0 and ψ ′
i (0) = 1. (8)

Note that no direct information about the spectrum (either bound or continuum states, or phase
shifts) is required in order to compute the determinant. All that is required is the integration
of (8), which is straightforward to implement numerically.

4. Radial formulation

Returning now to the instanton determinant problem, we can use the fact that the single
instanton background (2) has radial symmetry [4]. Thus, the regularized one-loop effective
action (3) can be reduced to a sum over partial waves of logarithms of determinants of radial
ordinary differential operators. Each such radial determinant can be computed using the
Gelfand–Yaglom result (7). Unfortunately, the sum over all partial waves is divergent. The
physical challenge is to renormalize this divergent sum.

In the instanton background (2), with scale ρ = 1, the Klein–Gordon operator −D2 for
isospin 1

2 particles can be cast in the radial form [4]

−D2 → H(l,j) ≡
[
− ∂2

∂r2
− 3

r

∂

∂r
+

4l(l + 1)

r2
+

4(j − l)(j + l + 1)

r2 + 1
− 3

(r2 + 1)2

]
, (9)

where l = 0, 1
2 , 1, 3

2 , . . . , and j = ∣∣l± 1
2

∣∣, and there is a degeneracy factor of (2l+1)(2j +1) for
each partial wave characterized by (l, j)-values. In the absence of the instanton background,
the free operator is

−∂2 → Hfree
(l) ≡

[
− ∂2

∂r2
− 3

r

∂

∂r
+

4l(l + 1)

r2

]
. (10)

This radial decomposition means that we can express the Pauli–Villars regularized effective
action also as

�S
�(A;m) =

∑
l=0, 1

2 ,...

deg(l)


ln

(
det

[
H(l,l+ 1

2 ) + m2
]

det
[
Hfree

(l) + m2
]

)
+ ln


det

[
H(l+ 1

2 ,l) + m2
]

det
[
Hfree

(l+ 1
2 )

+ m2
]




− ln

(
det

[
H(l,l+ 1

2 ) + �2
]

det
[
Hfree

(l) + �2
]

)
− ln


det

[
H(l+ 1

2 ,l) + �2
]

det
[
Hfree

(l+ 1
2 )

+ �2
]





 . (11)

Here we have combined the radial determinants for
(
l, j = l + 1

2

)
and

(
l + 1

2 , j = (
l + 1

2

)− 1
2

)
,

which have the common degeneracy factor deg(l) = (2l + 1)(2l + 2).
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The Gelfand–Yaglom technique provides a simple and efficient numerical technique for
computing each of the radial determinants appearing in (11). But to extract the renormalized
effective action we need to be able to consider the � → ∞ limit in conjunction with the
infinite sum over l. This can be achieved as follows. Split the l sum in (11) into two parts as

�S
�(A;m) =

L∑
l=0, 1

2 ,...

�S
�,(l)(A;m) +

∞∑
l=L+ 1

2

�S
�,(l)(A;m) (12)

where L is a large but finite integer. The first sum involves low partial wave modes, and the
second sum involves the high partial wave modes. We consider each sum separately, before
recombining them to obtain our final expression (22).

5. Low partial wave modes: determinants computed using Gelfand–Yaglom

The first sum in (12) is finite, so the cutoff � may be safely removed, and for each l the
determinant can be computed using the Gelfand–Yaglom result (7). We can simplify the
numerical computation further by noting that for the free massive Klein–Gordon partial-wave
operator, Hfree

(l) + m2 (with Hfree
(l) given in (10)), the solution to (8) is

ψ free
(l) (r) = I2l+1(mr)

r
. (13)

This solution grows exponentially fast at large r, as do the numerical solutions to (8) for the
operators H(l,j) + m2, with H(l,j) specified in (9). Thus, it is numerically better to consider the
ODE satisfied by the ratio of the two functions

R(l,j)(r) = ψ(l,j)(r)

ψ free
(l) (r)

; R(l,j)(0) = 1; R′
(l,j)(0) = 0. (14)

This quantity has a finite value in the large r limit, which is just the ratio of the determinants
as in (7). In fact, since we are ultimately interested in the logarithm of the determinant, it is
more convenient (and more stable numerically) to consider the logarithm of the ratio

S(l,j)(r) ≡ lnR(l,j)(r), (15)

which satisfies the differential equation

d2S(l,j)

dr2
+

(
dS(l,j)

dr

)2

+

(
1

r
+ 2m

I ′
2l+1(mr)

I2l+1(mr)

)
dS(l,j)

dr
= U(l,j)(r), (16)

with boundary conditions

S(l,j)(r = 0) = 0, S ′
(l,j)(r = 0) = 0. (17)

The ‘potential’ term U(l,j)(r) in (16) is given by

U(l,j)(r) = 4(j − l)(j + l + 1)

r2 + 1
− 3

(r2 + 1)2
. (18)

To illustrate the computational method, in figure 2 we plot S(l,l+ 1
2 )(r) and S(l+ 1

2 ,l)(r) for
various values of l, with mass value m = 1 (which is in the region in which neither the large nor
small mass expansions is accurate). Note that the curves quickly reach an asymptotic large-r
constant value, and also notice that the contributions from S(l,l+ 1

2 )(r = ∞) and S(l+ 1
2 ,l)(r = ∞)

almost cancel one another when summed. Indeed,

P(l) ≡ S(l,l+ 1
2 )(r = ∞) + S(l+ 1

2 ,l)(r = ∞)

∼ O

(
1

l

)
, l → ∞. (19)
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Figure 3. Plot of the l dependence of P(l) = S
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2 )
(r = ∞) + S

(l+ 1
2 ,l)

(r = ∞), for m = 1. P(l)

behaves like O( 1
l
) for large l.

This behaviour is illustrated in figure 3. At first sight, this looks like bad news, because when
including the degeneracy factor the sum over l is

L∑
l=0, 1

2 ,...

�S
l (A;m) =

L∑
l=0, 1

2 ,...

(2l + 1)(2l + 2)P (l). (20)

Therefore, the sum (20) has potentially divergent terms going like L2, L and ln L, as well as
terms finite and vanishing for large L. Remarkably, we find below that these divergent terms
are exactly cancelled by the divergent large L terms found in the previous section for the
second sum in (12).

6. High partial wave modes: determinants computed using radial WKB

In the second sum in (12) we cannot take the large L and large � limits blindly, as each
leads to a divergence. To treat these high l modes, we use radial WKB [19], which is a good
approximation in precisely this limit. This means we can compute analytically the large �

and large L divergences of the second sum in (12), using the WKB approximation for the
corresponding determinants. This is a straightforward computation, the details of which can
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be found in [1, 19]. We find the following analytic expression for the large L behaviour

∞∑
l=L+ 1

2

�S
�,(l)(A;m) ∼ 1

6
ln � + 2L2 + 4L −

(
1

6
+

m2

2

)
ln L

+

[
127

72
− 1

3
ln 2 +

m2

2
− m2 ln 2 +

m2

2
ln m

]
+ O

(
1

L

)
. (21)

It is important to identify the physical role of the various terms in (21). The first term
is the expected logarithmic counterterm, 1

6 ln �, which is subtracted as in (4) to define
the renormalized action. Since both � and µ are measured in units of 1/ρ, this also
explains the origin of the 1

6 ln µ term in (5). The next three terms give quadratic, linear
and logarithmic divergences in L. We shall show in the next section that these divergences
cancel corresponding divergences in the first sum in (12), which were found in our numerical
data. It is a highly nontrivial check on this WKB computation that these divergent terms have
the correct coefficients to cancel these divergences. Note that the ln L coefficient and the finite
term are mass dependent.

7. Putting it all together

We now combine the numerical results for the low partial wave modes with the radial WKB
results for the high partial wave modes to obtain the minimally subtracted renormalized
effective action �̃S

ren(m) as

�̃S
ren(m) = lim

L→∞




L∑
l=0, 1

2 ,...

(2l + 1)(2l + 2)P (l) + 2L2 + 4L −
(

1

6
+

m2

2

)
ln L

+

[
127

72
− 1

3
ln 2 +

m2

2
− m2 ln 2 +

m2

2
ln m

]
 . (22)

The remarkable observation is that the large L divergences found in the numerical results
are precisely cancelled by the analytic large L divergence found using WKB, leaving a finite
answer for the renormalized effective action. This holds for any mass m. In figure 4 we
plot these results for �̃S

ren(m), and compare them with the analytic small and large mass
expansions in (6). The agreement is spectacular. Thus, our expression (22) provides a simple
and numerically precise interpolation between the large mass and small mass regimes.

As an interesting analytic check, our formula (22) provides a very simple computation of
’t Hooft’s leading small mass result. When m = 0, the P(l) can be computed analytically:
P(l) = ln

[
2l+1
2l+2

]
. Then

�̃S
ren = lim

L→∞




L∑
l=0, 1

2 ,...

deg(l) ln

(
2l + 1

2l + 2

)
+ 2L2 + 4L − 1

6
ln L +

127

72
− 1

3
ln 2




= −17

72
− 1

6
ln 2 +

1

6
− 2ζ ′(−1)

= α

(
1

2

)
= 0.145 873 . . . (23)

which agrees precisely with the leading term in the small mass limit in (6).
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Figure 4. Plot of our numerical results for �̃S
ren(m) from (22), compared with the analytic extreme

small and large mass limits (dashed curves) from (6). The dots denote numerical data points from
(22), and the solid line is a fit through these points. The agreement with the analytic small and
large mass limits is very precise.
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Figure 5. Plot of �̃S(m), comparing the leading derivative expansion approximation (solid line)
from (24) with the precise numerical answers (dots). The dashed lines show the small and large
mass limits from (6).

8. Comparison with the derivative expansion

In [19], the renormalized effective action �̃S
ren(m) was computed using the derivative expansion.

Recall that the philosophy of the derivative expansion is to compute the one-loop effective
action for a covariantly constant background field, which can be done exactly, and then perturb
around this constant background solution. The leading order derivative expansion for the
effective action is obtained by first taking the (exact) expression for the effective Lagrangian
in a covariantly constant background, substituting the space-time dependent background, and
then integrating over space-time. For an instanton background, which is self-dual, we base
our derivative expansion approximation on a covariantly constant and self-dual background
[3, 20]. This leads to the following simple integral representation for the leading derivative
expansion approximation to the effective action [19], also computed using the same charge
renormalization subtraction in (4):

�̃S
ren(A;m)

]
DE = − 1

14

∫ ∞

0

dxx

e2πx − 1

{
14 ln

(
1 +

48x2

m4

)
+ 7

√
3
m2

x
arctan

(
4
√

3x

m2

)

− 84 + 768
x2

m4 2F1

(
1,

7

4
,

11

4
;−48x2

m4

) }
− 1

6
ln m. (24)
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Figure 5 shows a comparison of this leading derivative expansion expression with the exact
numerical data. In the range covered, the agreement is surprisingly good for such a crude
approximation. One would expect good agreement in the large m limit, but not in the small
m limit. I conjecture that this remarkable agreement for both small and large mass is due to
the special conformal symmetry of the single instanton background [4, 17]. This is physically
sensible, but has not yet been proved.

9. Concluding comments

Our angular momentum cutoff regularization and renormalization procedure of using the
Gelfand–Yaglom result numerically for the low partial wave modes, and radial WKB for
the exact large L behaviour for the high partial wave modes, produces a finite renormalized
effective action which interpolates precisely between the previously known small and large
mass limits. This is a highly nontrivial check, as all three computations (small mass [4], large
mass [8, 9], and all mass [1]) are independent. Our result also provides a simple interpolation
formula [1] which can be translated into the instanton scale dependence at fixed quark mass,
and this may be of phenomenological use.

Our computational method is versatile and can be adapted to a large class of previously
insoluble computations of one-loop functional determinants in nontrivial backgrounds in
various dimensions of space time, as long as the spectral problem of the given system can
be reduced to that of partial waves. Hyunsoo Min’s talk at this conference reports a new
computation [21] of the false vacuum decay rate in a four-dimensional self-interacting scalar
field theory. Here the classical ‘bounce’ solution is radial in 4D Euclidean space, so our
technique is ideally suited to the computation of the fluctuation determinant about this bounce.
An interesting feature here is the presence of a negative mode and zero modes. Interestingly,
a different regularization method, also based on Gelfand–Yaglom, has recently been applied
to the false vacuum decay problem by Baacke and Lavrelashvili [22].

Finally, we note that our method provides an extension of the Gelfand–Yaglom result for
ODE’s to the case of separable PDE’s. As noted by Forman [14] for the 2D radial disc problem,
the naive extension does not work because the product over angular momenta diverges, even
though the result for each angular momentum is finite. Physically, this is because in higher
dimensions renormalization is required. Our method incorporates renormalization and yields
a finite physical answer for the determinant of the separable partial differential operator.
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